VanderHaak AD: Lessons Learned

Chad Kruger, Interim Director CSANR Craig Frear, PhD student

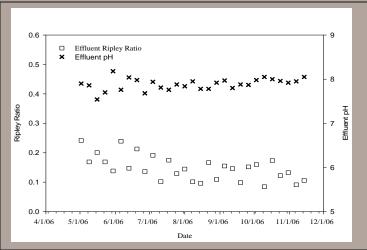
Northwest Dairy Digester Workshop

Sunnyside WA 11/18/08

People

The dairy anaerobic digestion research work completed at WSU is a result of a generous grant by the *Paul Allen Family Foundation* to the Climate Friendly Farming project. Involved researchers and participants include:

- Management:
 - Chris Feise, David Granatstein, Chad Kruger
- Producers:
 - Darrell and Steve Vanderhaak
- Providers:
 - Andgar Corporation; Marlin Statema, Bryan Van Loo, Kyle Juergens, Brad
 Weg
- Professors:
 - Shulin Chen, Claudio Stöckle, Joe Harrison, Craig MacConnell, Richard Shumway, Hal Collins
- Researchers/Students:
 - Tianxi Zhang, Usama Zaher, Anping Jiang, Wei Liao, Craig Frear, Göksel Demirer, Zhiyou Wen, Zhiwu Wang, Clark Bishop, Kay Oakley, Tim Ewing

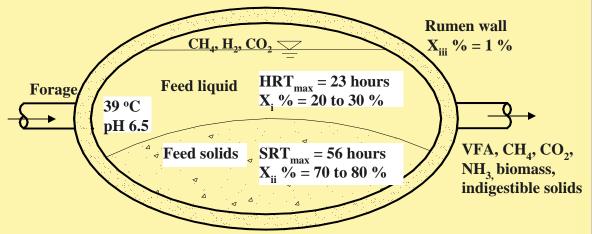


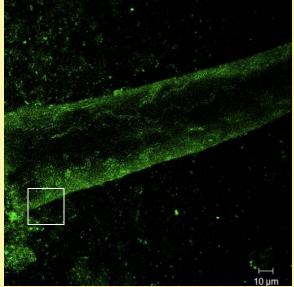
Operation/Monitoring

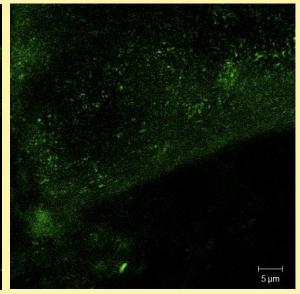
- •Monitoring occurred at Washington's first dairy AD unit in Lynden WA which installed a GHD/Andgar mesophilic plug-flow digester with axial mixing;
- •Co-digestion occurred at ~18.7% volumetric flow using different substrates including: egg breakage, fish breading, ravioli sauce, and artificial crab

Parameter	Unit	Mean ^a	
Cows	AU	938 ± 87	
Effective Volume	m^3	3,899	
Manure Flow	m³/day	96.58 ± 31.13	
Substrate Flow	m³/day	18.69 ± 0.87	
Total Flow	m³/day	114.33 ± 30.93	
Percentage Substrate	%	17.83 ± 5.69	
HRT	days	32.1 ± 6.17	
OLR	kg VS/m³ day	1.85 ± 0.48	
Temperature	°C	37.8 ± 0.5	
Design	GHD Modified Plug Flow with Axial Mixing		
Manure Handling System	Scrape Pit/AD/Screw Press/Storage Lagoon		
Engine Set	Caterpillar G398 coupled to a 450 KW Generator		

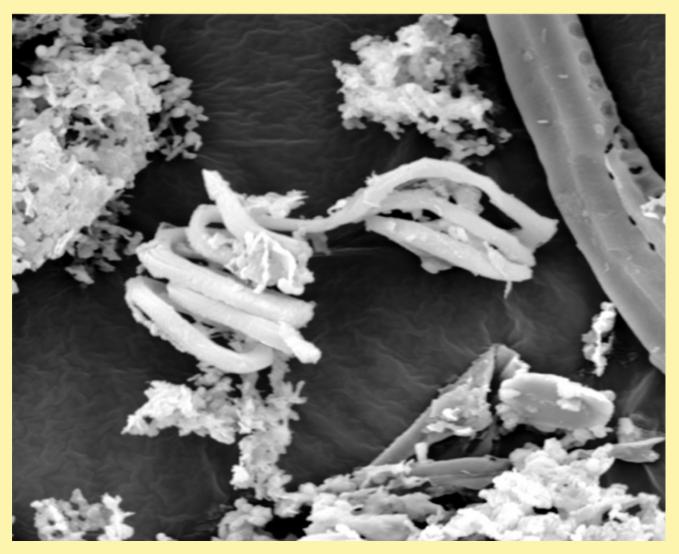
•Despite non-optimal loading of substrates into the digester, the digester showed good stability which improved slightly over time as the digester became more acclimated to stresses induced—as indicated by consistent effluent pH and Ripley Ratio






Bacteria

•Bacterial biomass concentrated on the fibrous particles within the manure



Bacteria

Vector Reduction

- •The digester is quite effective in accomplishing important vector reductions;
- •Lack of statistically-relevant differences in influent/effluent TKN, TP and FS show that minimal to no accumulation is occurring in the digester; confirming the modified mixing protocol as successful;
- •Pathogen reductions as studied through indicator fecal coliform analysis shows 99% or 2 log₁₀ reductions in the effluent of the digester

Parameter (g/L)	Influent	Effluent	Mean % Reduction
TS	70.42 ± 12.13	41.82 ± 4.03	40.61
VS	59.51 ± 7.49	30.52 ± 3.50	48.71
FS	12.54 ± 1.69	11.35 ± 1.93	NA
COD	84.13 ± 15.04	36.58 ± 5.74	56.62
VFA	7.71 ± 1.76	0.05 ± 0.02	99.35
TKN	4.12 ± 0.93	3.84 ± 0.53	NA
TAN	1.87 ± 0.45	2.65 ± 0.76	+41.71
TP	0.51 ± 0.14	0.44 ± 0.10	NA
K	2.31 ± 0.35	2.28 ± 0.27	NA
pН	6.87 ± 0.41	7.88 ± 0.14	+14.37
Alkalinity	8.96 ± 1.00	14.23 ± 1.80	+58.82
FC (cfu/g)	$339,031 \pm 247,461$	$3,418 \pm 7,060$	98.99

Gas/Electrical Production

- •Biogas Production was well above previously reported EPA (2005) report on similar digester (~109 ft³/cow day). Reporting values per cow is problematic;
- •Substrate addition did lead to an increase in mean CH₄ percentage; H₂S values were elevated and were tied to particular sulfur/protein-rich substrates added.

Parameter	Units	Co-Digestion
Total Biogas	ft ³ biogas/day	$155,031 \pm 18,046$
Total Biogas	ft ³ biogas/ cow* day	232.4 ± 27.1
Specific Methane Yield	ft ³ CH ₄ /kg VS _{Added}	15.6 ± 1.8
Specific Methane Yield	m ³ CH ₄ /kg COD _{Added}	10.2 ± 1.2
Specific Methane Yield	L CH _{4/kg} COD Destroyed	512.9 ± 59.7
Reactor Performance	m ³ biogas/ m ³ reactor day	1.13 ± 0.13
Biogas Composition	%CH ₄ ; %/H ₂ S	$63.52 \pm 6.89; 0.20 \pm 0.12$

- •Biogas to electricity with a rebuilt Caterpillar G398 engine coupled to a generator with a capacity of 450kW per hour. Engine efficiency is approximately 30% in converting the Btu's in the gas into electricity.
- •Improvement in engine efficiencies from other manufacturers which range from 37% 39% efficient. This increase in efficiency results in an increase of electricity produced per a given amount of biogas.

Economics

- •Federal grants do have an important economic effect on projects and play a vital role;
- •Trucking manure to digester is negatively offset by fuel and operation costs;
- •Low electrical sale prices, as in PNW, negatively affect the economics with even 1 cent increases important;
- •Co-digestion is extremely important, especially given low electricity sales;
- •Other incomes such as carbon trading and value-added fiber sales can play an important role.

	NPV		IRR	
		% Change		% Change
Scenario	\$	from Base	%	from Base
Base Scenario	1,372,777		18.68	
Alternative Digester Life, Investme				
10 Years	553,901	-59.65	14.80	-20.77
30 Years	1,660,989	20.99	18.93	1.35
Increase by 1%	1,186,654	-13.56	18.68	0.00
No Grants	946.099	-31.08	10.18	-45.48
Increase by 250 Cows	1,016,246	-25.97	15.35	-17.85
Decrease by 250 Cows	1,497,113	9.06	20.04	7.28
1,300 Cows, No Food Waste	1,721,941	25.43	23.42	25.40
Electricity Generation Scenarios				
No Power Generation	153,685	-88.80	4.50	-75.91
Increase by \$0.01/kwh	1,692,841	23.32	21.63	15.82
U.S. average \$0.0877/kwh	2,579,420	87.90	29.38	57.30
327 kwh Output	1,990,036	44.96	22.44	20.14
Tipping Fee Scenarios				
No Tipping Fees	-1,994,344	-245.28	-	-
Decrease Tipping Fees by 50%	-142,032	-110.35	-0.89	-104.77
Carbon Credit Scenarios				
No Carbon Trading	1,108,807	-19.23	16.30	-12.72
25% Commission	1,519,023	10.65	20.19	8.11
ECX Prices	2,513,094	83.07	28.86	54.52
Fiber Scenarios				
No Fiber Sales	1,262,199	-8.06	17.63	-5.63
All Fiber, \$13.50/ton	1,966,705	43.26	22.17	18.67
All Fiber, \$20.00/ton	2,462,566	79.39	25.34	35.68

Economics

	Co-dig	gestion	Manur	e-Only
Gross Receipts	\$/AU yr	\$/yr	\$/AU yr	\$/yr
Tipping Fees	195.61	183,484		
Electrical Sales	141.57	132,792	75.83	71,128
Carbon Credit	19.68	18,464	19.68	18,464
Avoided Bedding Cost	15.25	14,300	15.25	14,300
Tax Credit	56.63	53,117	30.33	28,451
Fiber Sales	10.94	10,265	10.94	10,265
Other Income	4.59	4,306	4.59	4,306
Total Revenue	444.27	416,727	156.62	146,913
Operating Costs				
Delivery	50.68	47,539	50.68	47,539
Maintenance	78.43	73,571	78.43	73,571
Utilities	32.13	30,139	32.13	30,139
Miscellaneous	31.15	29,226	31.15	29,226
Ownership	81.09	76,063	81.09	76,063
Total Operating Costs	273.49	256,538	273.49	256,538
Return to Risk	170.78	160,189	-116.87	-109,625

- •Co-Digestion with its *tipping fees* and subsequent *extra biogas* production and corresponding *electrical sales and carbon credits* show a very large effect on overall digester economics;
- •Extra receipts from co-digestion can represent as much as 64% of the total digester revenue;

^{**}Conclusions based on ~18% volumetric flow of substrate composed of protein and lipid-rich industrial food processing waste and a modeled estimate of manure-only outputs

Co-Digestion Concerns

Concerns do arise with co-digestion

•Co-digestion can bring considerable amounts of nutrients and/or salts to the farm-gate with USDA APHIS (2004) reporting that 36% and 55% of US CAFO dairies already experience N and P overloads on their farm land, respectively.

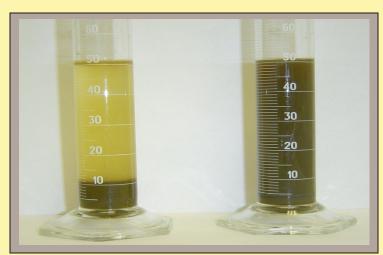
Nutrient	Manure-Only	Co-Digestion	% Change
	metric tons/yr	metric tons/yr	%
Ammonia N	89.7	110.66	23.37
Total N	102.31	160.36	56.74
Total P	16.29	18.37	12.77
Total K	101.89	95.2	-6.57

•In addition, concerns regarding management of solid waste, permitting and air/water/pathogen protection have brought regulatory debate to the practice.

Substrate	EU	Ontario
Manure	No Pre-treatment	No Pre-treatment
Field Green Waste	No Pre-treatment	No Pre-treatment
Pre-Consumer Food Processing (No ABP)	No Pre-treatment	No Pre-treatment
Pre-Consumer Food Processing (ABP)	70C for 1 hour	70C for 1 hour
Post-Consumer Food Waste	70C for 1 hour	NO
Slaughterhouse Solids of > than 6 mm	133C, 3 bar for 20 min	70C for 1 hour
Slaughterhouse water	No Pretreatment	70C for 1 hour
Mortalities and Certain Tissues	NO	NO

Producer/Supplier Lessons

- The digester itself is a simple operating system that if kept satisfied with proper temperature and feedstock will operate very well with little disruption (high alkalinity, simple engineering and mixing design).
- Most of the operator's time is spent on the supporting equipment such as pumps, separators, and the engine.
- Proper operation and preventative maintenance will improve the operating efficiency of the supporting equipment.
- The digester's co-products are slowly being recognized as a larger part of the value of owning a digester.
- Many of the unique environmental benefits of AD fail to be recognized by environmental regulation groups (odor, pathogen reduction, fertilizer).
- There are a lot of digester systems and accessories that are unproven and require due diligence before reaching commercialization.

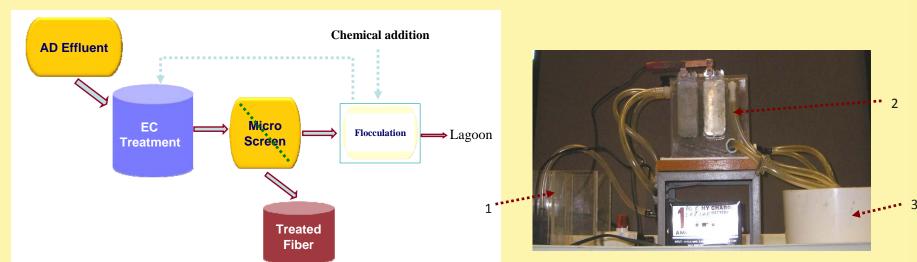

Nutrient Recovery-P

Recovery of P-Solids from AD effluent

- •P in the AD dairy manure is NOT readily available with as much as 50% of TP tied up as calcium or magnesium micro-crystalline salts < 74 microns;
- •Course fiber separation results in only ~20% removal of TP from the AD effluent;

•Struvite crystallization of AD dairy manure yields only 15% TP removal as compared to 90% when utilizing swine. This can improve to >70% if chemicals

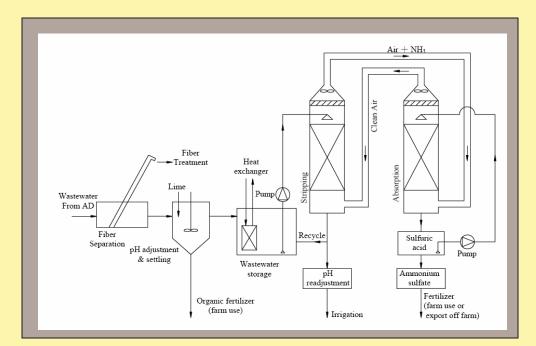
such as EDTA are introduced.


•Polymers appear to be well suited for flocculating the suspended P, such as PEI with MW near 1 million. Low dosage can result in 70% TP removal.

Nutrient Recovery-P

Recovery of P-Solids from AD effluent

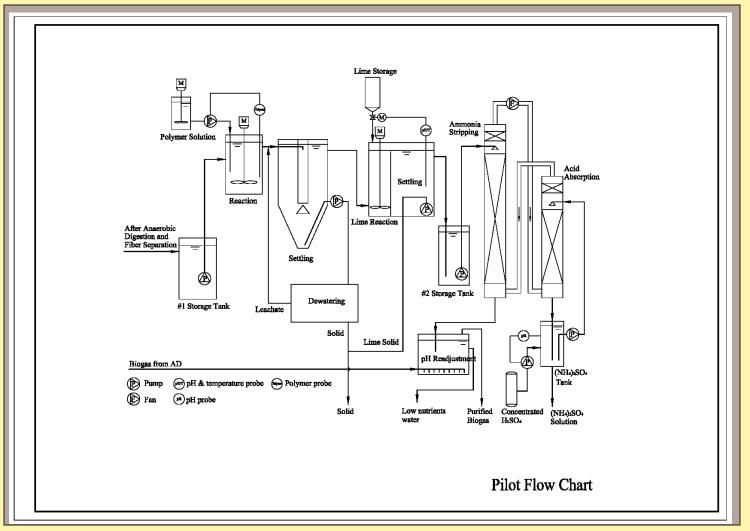
- •Electro-coagulation experiments confirm that ~ 5 minutes residence time in apparatus allowed for ~70% TSS and ~52% TP removal, respectively;
- System needs more testing and optimization;
- •Testing multiple systems to optimize TP removal while also reducing capital and operation costs



Nutrient Recovery-N

Recovery of Ammonia from AD effluent

- •Ammonia stripping recovers ammonia sulfate slurry with high enough concentration to warrant export and sale off of the farm;
- •Operation is optimized to dairy conditions, i.e. 30-35C, pH=10, lower air cycle rate, leading to roughly 75% removal and recovery of ammonia;
- •Resulting de-stripped effluent is high in pH but biogas can be used to lower pH while also scrubbing it of H₂S and some CO₂



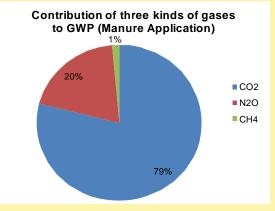
Nutrient Recovery-ALL

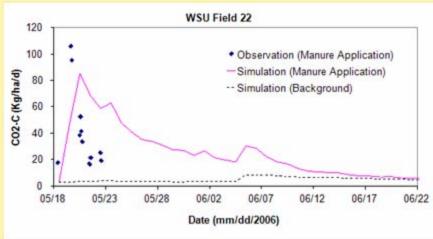
Pilot-testing at ~2 gpm on-going at Vanderhaak farm; fertilizer and economic analysis to follow

High Quality Fiber

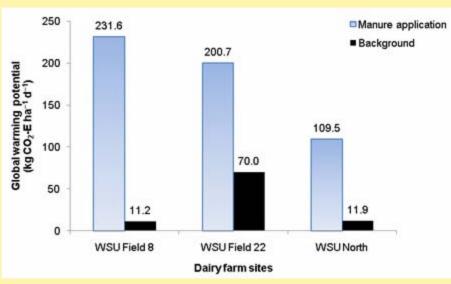
Presently

AD operations separate fiber after AD process and then use as


convincing/developing market)



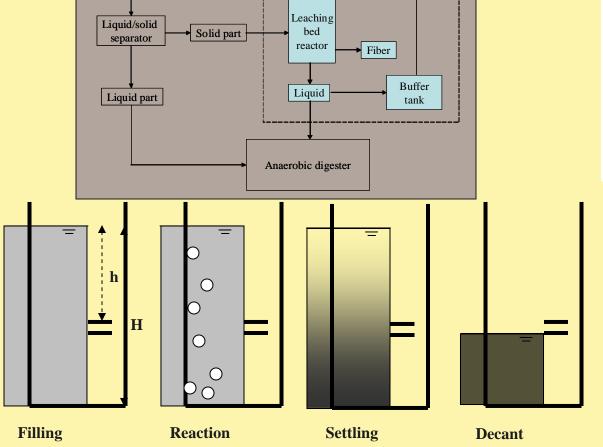
Field Application

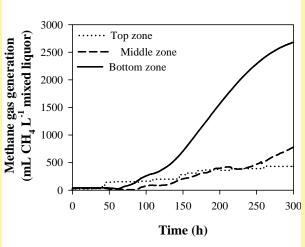

•Analysis still on-going, however results indicating the importance of de-gasssing AD effluent of CH₄ prior to application and control of moisture, application conditions

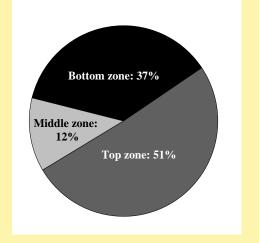
for N₂O

Original Manure

Flush System

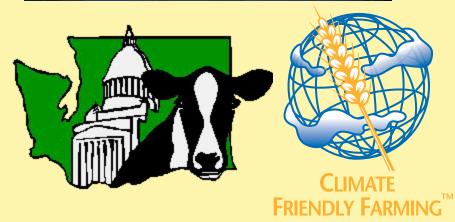

•Analysis of flush manure and lessons learned leading to design of


Leaching bed fiber


reactor system

SBR reactor for digestion of flush dairy manure

Fresh water



Funding

THE **PAUL G. ALLEN FAMILY** foundation

Agri-Environmental And Bioproducts Engineering

Research Group

ANAEROBIC DIGESTERS
WASTE TO POWER!

